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Abstract 

An explicit formula has been derived to describe the 
attenuation and broadening of cylindrically averaged 
diffraction intensities from a helix of any given length 
which possesses cumulative azimuthal disorder. The 
application limits of an approximate formula, repre- 
sented by the first term of this formula, are defined. 
Strategies to estimate the length of fibers, the degree of 
disorder, and the overlap of adjacent layer lines are 
outlined. Some features of diffraction patterns from the 
disordered helical structure of the HbS fiber are 
interpreted in light of these results. In these patterns, 
non-zero-order Bessel functions are attenuated and 
broadened due to azimuthal disorder and finite length. 
Adjacent layer lines overlap because of the very large 
axial repeat distance of the HbS fibers. As a result, the 
contribution of any Bessel function term with n > 10 is 
not discernible in these patterns. Only Bessel terms with 
n < 6 may be accurately estimated in these patterns, i f  
instrumental broadening is negligible or correctable. 
The theory presented here may also be used to make a 
rough estimate of the degree of disorder in F-actin fibers 
by comparison of X-ray diffraction patterns with serial 
peak projections calculated assuming various degrees of 
disorder. 

1. Introduction 

The effect of cumulative azimuthal disorder on X-ray 
diffraction from a helix was first addressed by Egelman, 
Francis & DeRosier (1982) in their analysis of 
diffraction from F-actin. They suggested that in the 
X-ray diffraction patterns from oriented gels of F-actin, 
the intensity of layer lines was reduced by a factor 
proportional to n 2, where n is the order of the dominant 
Bessel-function term contributing to the layer line. 
Egelman & DeRosier (1982) calculated the diffracted 
intensity from a cumulatively disordered helix by 
analogy with the calculation of the mean squared end- 
to-end distance in flexible polymers. From this analysis, 
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they derived an equation for the peak intensity of layer 
lines and showed that it is proportional to 1/n 2. As the 
total intensity of X-ray scattering is a constant, the 
width of the layer line along the direction perpendicular 
to the layer line (Z direction) is proportional to n 2. In 
this analysis, it was assumed that (i) the number of 
subunits in the structure was large, and (ii) the product 
of the degree of disorder and the order of the Bessel 
function was small. 

This theory was extended by Barakat (1987), who 
obtained an equation for the peak intensity of layer 
lines from a cumulatively disordered helix based on 
rigorous statistical considerations. The only assump- 
tion in his analysis was that the random twists between 
subunits were uncorrelated Gattssian random variables 
with a zero mean and a small variance. Barakat's 
(1987) equations are applicable to disordered helices of 
any length: and for a sufficiently long helix they 
reduce to Egelman & DeRosier's (1982) results. For a 
suffic{ently long helix with cumulative azimuthal 
disorder, the distribution of intensity along the Z 
direction has been derived by Inouye (1994) by 
comparison with the diffraction theory for one- 
dimensional paracrystalline disorder. These treatments 
do not, however, address all the properties of 
diffraction needed to completely characterize a helix 
of limited length that displays cumulative azimuthal 
disorder. 

Sickle-cell hemoglobin (HbS) fibers have been shown 
to display cumulative azimuthal disorder (Carragher, 
Bluemke, Gabriel, Potel & Josephs, 1988; Lewis, Gross 
& Josephs, 1994). The number of subunits in a turn of 
the fiber has been observed to vary between 42 and 51 
(Dykes, Crepeau & Edelstein, 1979; Carragher et al., 
1988), resulting in an average axial repeat of ca 3000 A,. 
Given the long axial repeat, even a small degree of 
disorder will result in layer lines broadening to the point 
that they overlap with adjacent layer lines. Quantitative 
estimation of this broadening cannot be made using 
previous treatments of azimuthal disorder since they 
assume a large number of subunits. The length of a 
typical HbS fiber may be as short as a few repeats 
(Briehl, Mann & Josephs, 1990). 
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In this paper, we present a rigorous derivation of the 
attenuated diffraction intensities and their broadening 
along the Z direction for an azimuthally disordered helix 
of limited length, and demonstrate the application of 
this theory to sickle-ceU hemoglobin fibers. 

2. Theory 

We require the Fourier transform of a cylindrical 
structure consisting of N subunits on a cylindrical 
surface of radius r 0, with a constant axial separation, p. 
For simplicity, the subunit is taken to be a point atom. 
This Fourier transform is 

N 

F(R, q/, Z) = ~ exp(27ri[Rr o c o s ( q / -  ~ok) + kpZ]}, 
k = l  

(1) 

where ~o k is the angular coordinate of the kth subunit. 
The intensity of diffraction from the structure is given 
by 

N N 

I(R, q/, Z ) =  ~ ~ exp[Zrr i(k-  k')pZ] 
k = l  k ' = l  

x exp[2rciRro c o s ( q / -  q)k)] 

x exp[2rriRr o cos(zr - q / +  ~0k,)]. (2) 

Substitution into (2) of the following well known 
expansion (Watson, 1947) 

+oo 

exp(iucosO) = ~ Jn(u)exp[in(O -t- zr/2)], (3) 
I 'I=--(X~ 

where Jn(u) is the Bessel function of degree n, gives 

N N eo eo 

I(R, q/, Z) = ~ ~ ~ ~ exp[2rri(k - k')pZ] 
k=l  k ' = l  n = - c ~  n ' = - ~  

x J.(2rcRro)J.,(ErcRro) 
t, 

× exp[i(n - n ' ) (q /+  rr/2)] 

× exp[-i(n~o k - n'~oe)]. (4) 

The cylindrically averaged intensity over the angle q /o f  
a bundle of parallel, non-interfering, similar structures 
is 

N N oo 

I ( R , Z ) =  ~ ~ ~ exp[27ri(k-k')pZ]j2(27rRro) 
k = l  k ' = l  n = - o o  

x exp[-in(t& - ~0z) ] (5) 

as shown by Franklin & Klug (1955) for a regular helix. 
We rewrite (5) as 

I ( R , Z ) =  ~ JZ(2rcRro)W(n,Z), (6) 
n = - - O 0  

where 

N N 

W(n, Z) = ~ ~ exp[2rri(k - k')pZ] 
k=l  k '= l  

x exp[-in(~0 k - ~0z) ]. (7) 

For a regular helix with u/v symmetry where there are u 
subunits in v turns in the axial repeat, c (=  up), and 
where ~0~ = k(2nv/u), the equation becomes 

N N 

W(n, Z) = ~ ~ exp[2zri(k - l()(pZ - nv/u)]. (8) 
k=l  k ' = l  

The value of the function W(n, Z) is equal to zero except 
at the discrete points defined by 

pZ - nv/u = m, m = 0, 4-1, 4-2, 4-3 . . . . .  (9) 

at which points W(n, Z) -- N 2. From this equation, we 
find that Z -- (urn + vn)/up, where up = c, the helical 
repeat, and u m +  vn - l, another integer. The function 
W(n, Z) is therefore an expression of the selection rule 
from the classical theory of helical diffraction 
(Cochran, Crick & Vand, 1952). For a non-regular 
helix, the function W(n, Z), rather than being a discrete 
set of points along Z, is usually continuous along the Z 
direction. 

For a helix displaying cumulatively azimuthal 
disorder, where the disorder is not 'too large',  an 
'average helix', with a symmetry of u/v, may exist over 
a limited range. The angular coordinate of its kth 
subunit may be written as (Egelman & DeRosier, 1982; 
with a different symbol and a different unit for &): 

k 

~o k = k(2rcv/u) + ~ 27rg i, (10) 
j = l  

where & is an uncorrelated random Gaussian variable 
with zero mean. The standard deviation of the variable 
&, (g2)l/z, denoted by g, is a measure of the degree of 
disorder of the system. 

Substitution of (10) into (7) gives 

N N 

W(n, Z) = ~ ~ exp[Zrri(k - k')(pZ - vn/u)] 
k=l  k ' = l  

x e x p  - i n  2 n ' & - ~ 2 r r g i  . (11) 
=1 j = l  

As pointed out by Barakat (1987), the ensemble 
averaging over & for the second exponential can be 
expressed in terms of g. W(n, Z), averaged over all 
values of &, after replacement of the double summation 
by a single one as usual (Vainstein, 1966), becomes 

N - 1  

(W(n,Z)) = N + 2 ~ (N - k)cos[2rck(pZ - vn/u)] 
k=l  

× exp(-2zr2n2kg2). (12) 

This averaged (W(n, Z)) describes the broadening of a 
Bessel-function term of order n due to azimuthal 
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disorder with standard deviation, g, in a helix of N 
subunits. 

For convenience, two new variables are introduced: 

ot = 2rc(pZ - nv/u), (13) 

/3 = exp(-2~n2g2.) .  (14) 

The function (W(n, Z)) may then be written as 

N-1 
(W(n, ot)) = N + 2  ~ ( N - k ) f f c o s k o t .  (15) 

k=l 

The explicit form for the first sum in (15) is taken from 
Gradshteyn & Ryzhik (1980): 

N-1 
f f  cos kot = [/3 cos ot - /32  _ /3N COS Not 

k=l 

+ flN+l c o s ( N -  1)ot] (16) 

x (1 - 2/3 cos ot +/32)-x, 

and the second sum is the derivative of the first with 
respect to/3. 

Equation (15), after summation according to the 
above, becomes 

(W(n, ot)) = N(1 - /32) / (1  - 2/3c0s ot +/32) 

- 2/3(cos ot - 2/3 + / 3 2  COS ot) 

x (1 - 2/3 cos ot + / 3 2 ) - 2  

n t- 2/3 O+1 [ c o s ( N  n t- 1)ot - 2/3 cos Not 

.+. /32 C o s ( N  --  1)ot] 

x (1 - 2/3cosot +/32)-2. (17) 

Henceforth, the above function will be referred to as the 
broadening function of the Bessel term j2. In combina- 
tion with the appropriate Bessel functions, (6) combined 
with (17) describes the scattered intensity in reciprocal 
space of a cumulatively disordered helix of any length. 

The profile along the Z direction, the height and width 
of (W(n, ot)) or (W(n, Z)), depend on two factors: (i) the 
helix length, or the total number of subunits, N, in the 
structure, and (ii) the degree of disorder of the 
structure, g. 

The principal maxima of the broadening function 
occurs at ot equal to zero or an integer multiple of 2re, 
and (17) becomes 

(W(n, 0)) = N(1 +/3) / (1  - / 3 )  - 2/3/(1 - /3)2 

+ 2/3N+1/(1 _/3)2. (18) 

This equation corresponds to equation (3.2) obtained by 
Barakat (1987) through statistical considerations. 

To examine the broadening function for the zero- 
order Bessel function, n is placed equal to zero in (12) 
and ot = 2rcpZ. The broadening function then becomes 

N-1 
W(0, ot) -- N + 2 ~ (N - k) coskot, (19) 

k=l 

which, upon summation, gives 

W(O, ot) -- sin2(Not/2)/ sin2(ot/2). (20) 

When c~ is zero, W(0,0) = N  2. The broadening 
function, (17), normalized by W(0, 0) becomes 

(w(n, ot)) = ( l /N)(1  - fl2)/(1 - 2/3cosot +/32) 

- (1/N2)2fl(cos ot - 2fl + f12 cos or) 

x (1 - 23 cos ot +/32) -2 

+ (I/N2)2/3N+I[cos(N + 1)ot 

- 2/3cosNot + / 3 2  c o s ( N  - l)ot] 

x (1 - 2/3cos ot + / 3 2 ) - 2 ,  (21) 

which will be used to examine the effect of changes in g 
and N. 

The maxima of the normalized broadening function 
are 

(w(n, 0)) = ( l /N)(1  +/3) / (1  - / 3 ) -  (1/N2)2/3/(1 -/3)2 

+ (1/N2)2/3N+l/(1 --/3) 2 (22) 

and, for n = 0, 

w(0, 0) = 1. (23) 

To examine the properties of the broadening func- 
tion, (w(n, ot)) as a function of ot is plotted for various 
helical lengths and degrees of cumulative disorder in 
Fig. 1. For zero-order Bessel-function terms, neither 
the height nor the width of w(0, ot) are affected by the 
degree of cumulative disorder, as shown by the bold 
curves in Figs. l(c),(d),(e), where the disorder 
increases successively for equal numbers of subunits. 
When g remains constant, the width of w(0, ot) 
decreases with increasing numbers of subunits, N, as 
seen in Figs. l(a),(b),(c). 

By contrast, non-zero-order Bessel terms are mark- 
edly affected by both azimuthal disorder and the length 
of the helix. The maxima of non-zero-order Bessel 
terms decrease with increasing Bessel order n, with 
increasing degree of disorder g (light lines in Figs. 
l¢,d,e), and with increasing numbers of subunits N, 
as shown in Figs. l(a),(b),(c). The widths of the 
maxima increase with increasing Bessel orders, increas- 
ing degree of disorder, g, and as the number of 
subunits, n, decreases. 

The contribution of each of the terms of (21) is shown 
in Fig. 2 for a disordered helix with (ng)= 5.4/360. 
Plots are shown for values of N equal to (a) 200, (b) 
400, (c) 600, (d) 800, and (e) 2000. The thin continuous 
line, the broken and the dotted lines represent the 
three terms of (21), respectively. The thick line is 
the summation of all of these terms, or the broadening 
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function (w(n, u)). For non-zero-order Bessel terms, all 
of the terms from (21) decrease with increasing N. The 
third term goes to zero for a moderately long helix, and 
both the second and the third terms may be ignored for a 
sufficiently long helix. In that case, the function 
(w(n, or)) may be approximated by the first term: 

(w(n, ot)) = ( l /N)  (1 -/32)/(1 - 2flcosot + f12). (24) 

This equation corresponds to equation (10) of Inouye 
(1994) derived assuming a large number'of subunits. 

As shown in Fig. 2, when N is sufficiently large, the 
peak value and the profile of the function obtained from 
the approximate equation (24) approaches that obtained 
from the exact equation (21). Let us define a 'sufficient' 
length of a disordered fiber as the lower limit of length 
where the approximate formula (24) is applicable. 
Then, a 'sufficient' length consisting of a 'sufficiently' 
large number of subunits may be defined for any 
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Fig. 1. Curves of  (w(n, a)) plotted against a/2n,  in the range - 0 .1  to 
0.1, for (a) N =  10, g =  10/360; (b) N = 2 0 ,  g =  10/360; 
(c) N = 40, g = 10/360; (d) N = 40, g = 15/360; (e) N = 40, 
g = 20/360.  The thick lines are for n = 0, the thin lines are for 
n = 1, 2, 3, 4 and 5, progressively down from n = 0. Both 
maximum and width of  w(n, u) decrease with increasing N for 
non-zero Bessel terms, while the maximum decreases and the width 
increases with increasing g and with increasing n. The maximum of  
w(0, a)  is always equal to 1.0, while its width is g-independent and 
decreases with increasing N. 

required accuracy. For example, a requirement of 95 % 
accuracy demands that N be at least N~s~ 5, where. N~suf ~5 is 
the value of N at which the ratio of (w(1, 0)) from the 
exact equation (21) to that from the approximate 
equation (24) is not less than 95 %. This may be derived 
from comparison of the calculations for the first-order 
Bessel-function terms, since they have the largest value 
of non-zero terms and the largest value of the broad- 
ening function. 

It can be shown from (21) that if a disordered helix is 
infinitely long the broadening function (w(n, c~)) will be 
equal to zero for any non-zero Bessel-function term. 
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Fig. 2. The normalized broadening function (w(n, a)) and its three 
constitutive terms as written in formula (21), plotted for a 
disordered helix with (ng)= 5.4/360 and (a) N = 2 0 0 ;  (b) 
N = 400; (c) N = 600; (d) N = 800; (e) N = 2000. The thick 
lines represent the broadening function, the thin solid, broken and 
dotted lines represent its three terms, respectively. All of  the terms 
and the function itself decrease with increasing N. The third term 
can be ignored at ca N = 600, as shown in (c) where the broadening 
function may be represented by two terms of  equation (21). Both the 
second and the third terms may be ignored at much larger values of  
N [e.g. 2000 as shown in (e)], where the approximate formula, (24), 
becomes valid. 
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w(0, c 0, the broadening function for the zero Bessel- 
function term, however, always has the value of 1.0 at 
ot----0. Its width decreases with increasing N. The 
diffraction pattern from this system will then consist of 
a series of sharp layer lines with spacing of lip. 

There are two forms of the broadening function, i.e. 
(w(n, c0) and (w(n, Z)). In the first form, all of the 
functions (w(n, or)), with various Bessel orders, are 
placed at a common origin, corresponding to the 
common peak position. This allows the investigation 
of the effects of fiber length and degree of the disorder 
on the function, as shown above. To survey the effects 
of the degree of disorder and the fiber length on the 
whole diffraction pattern, the function (w(n, Z)) must be 
examined. A change in variable from c~ to Z according 
to (13) effects the change from (w(n, or)) to (w(n, Z)). 
The peak positions of (w(n, Z)) depend on the symmetry 
of the fiber and Bessel order, and are spread along the Z 
direction in reciprocal space. 

For example, by changing the origins of the curves 
in Fig. l(c) according to (13), imposing a helical 
symmetry of 2/5, and expanding n from - 1 0  to +10, 
we have the broadening function (w(n,Z)) over a 
complete period in the range from 0 to 1/p, as shown in 
Fig. 3. The positions of maxima of the curves for each n 
value are identical with those predicted by the selection 
rule for a regular helix of the same symmetry, and are 
marked below each peak. The functions (w(n, Z)) with 
low Bessel orders are sharper, while those with higher 
order are broader and prone to overlap with neighbors. 
The interval between adjacent layer lines depends on the 
value of u, the number of subunits in a long period of 
the structure. If u is very large, the layer lines may 
overlap even if the degree of disorder is small. 

3. Applications 

3.1. Measurement of N and g 

Generally speaking, it is difficult to measure the 
averaged fiber length and the degree of disorder from 
the broadening of layer lines for a helix with cumulative 
angular disorder. This is true because the layer-line 
intensity is a summation'over several Bessel terms, each 
attenuated by different degrees and broadened along the 
Z direction to varying extent. 

When a single Bessel term makes a dominant 
contribution to a layer-line intensity, the fiber length 
can be estimated from the zero-order Bessel broad- 
ening, and the degree of disorder measured from non- 
zero Bessel terms. From (20), it is possible to derive a 
formula that relates the number of subunits, N, with 
AZ, the width at half-maximum of the broadening 
function curve w(0, Z): 

N = 0.89/pAZ. (25) 

This equation is formally the same as Scherrer's 
equation for measuring crystallite size (Scherrer, 
1918). It is not difficult to obtain the degree of disorder 
for a sufficiently long fiber. The width at half-maximum 
of function (w(n, or)) in the approximate equation (24) is 

Aot = 2 a rccos [1 -  (1 --/3) 2/2/3], (26) 

where Aot is twice the value of or, at which point the 
function (w(n, oO) is half-maximum. Obviously, Aot 
depends on both n and g. In fact, the factors n and g 
always appear together, as shown in (14). For 
convenience, n and g can be considered as a single 
parameter. When the product (ng) is small, Aot may be 
approximated as 
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Fig. 3. Curves of the broadening function (w(n, Z)) versus Z, n = - 1 0  
to 10, for a disordered helix with N = 40, g = 5/360 and symmetry 
of 5/2. They were obtained by moving the origins of (w(n, c~)) 
according to formula (13). The positions of maxima are marked as 
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Ac~ = 4rrZ(ng) 2. (27) 

Plots of Act versus (ng) are shown in Fig. 4, where the 
continuous and dotted curves are obtained by the use of 
(28) and (29), respectively. The difference been the two 
curves can be ignored completely when (ng) is less than 
50/360. The difference remains less than 5 % even for a 
value of (ng) as high as 70/360. For asufficiently long 
fiber, the maximum of function (w(n, or)) is inversely 
proportional to N, but its width is independent of N. 

When the fibers are short, (27) is no longer valid, 
while (25) is still applicable to estimate the fiber length. 
Substitution of N, obtained from (25), and an assumed 
value for degree of disorder into (21) gives a calculated 
broadening function. By minimizing the discrepancy 
between the latter and observed broadening, accurate 
values for both fiber length and degree of disorder can 
then be obtained based on the prin.ciple of least squares. 

3.2. HbS fiber 

The HbS fiber is a helical structure with subunit twist 
of --,8 °, or axial period of ~3000 ]k (Dykes, Crepeau & 
Ede!stein, 1979; Carragher et al., 1988). X-ray 
diffraction patterns from HbS fibers, however, display 
only layer lines with spacings of 1/64 ~-1,  and lack the 
major features expected in diffraction from a helical 
structure (Fairchild & Chiu, 1979). The discovery of 
cumulative azimuthal disorder in this fiber (Carragher et 
al., 1988; Lewis, Gross & Josephs, 1994) and the 
theory developed here make it possible to explain these 
observations and to estimate the effects of limited length 
and disorder on the pattern, 

Two methods based on the above theory may be used 
to estimate the overlap of adjacent layer lines in 
diffraction patterns from HbS fibers. 

(a) The ratio of background to peak for a broadening 
function. Define the ratio of background to peak 
intensity as 

B/P = (w(n, Z,, + 0.5~up)) 
(w(n, Z,,)) ' (28) 

where Z,, is the peak position of (w(n,Z)) and 
(Z,+O.5/up) is its background position, halfway 
between adjacent layer lines. Consider a function 
(w(n, Z)) with B/P < 0.2 as well separated from its 
neighbors, and any broadening function with B/P > 0.2 
as exhibiting significant overlap. If the B/P ratio is 
larger than 0.8, the function (w(n, Z)) will not show a 
peak in any sense, being a relatively flat function with a 
width greater than the layer-line spacing. In other 
words, a Bessel term broadened by this function will 
contribute equally to observed layer lines and apparent 
background. The curves of B/P for HbS fibers, with 
u = 48, for values of N equal to 20, 40, 60, 100, 500 
and 9000, are plotted against (ng) in Fig. 5. As 
expected, the ratio increases with increasing degree of 

disorder, with increasing Bessel order, and with 
decreasing fiber length. The curve for N -  500 is not 
significantly different from that of longer fibers and may 
be regarded as the smallest values of B/P for a helical 
structure with symmetry of 48/1. It intersects with the 
lines B/P = 0.2 and B/P- -0 .8  at (ng)= 14/360 and 
(ng) = 29/360, respectively. The value of g estimated 
from electron micrographs of HbS fiber is 2.7/360 
(Carragher et al., 1988). Given this estimate, in the 
HbS fiber diffraction pattern, any Bessel term with 
n > 10 will be flattened completely, and only Bessel 
terms with n < 6 are, in principle, capable of being 
observed and estimated. For shorter fibers, these effects 
are even more serious. 

(b) Peak projection along the R direction of the 
diffraction intensity. The peak projection for a disorder 
helix with point-atom subunits is defined as 

-'{-(DO 
i ( Z ) =  ~ j~(w(n,Z)), (29) 

?l~--OO 

where j2 is the principal maximum of j2(2rrRro). This 
corresponds to a projection of diffraction intensities 
along the direction parallel to the layer lines. The 
projections for the HbS fiber with u -- 48, g = 2.7/360 
and N = 24, 96 and 192 are shown in Figs. 6(a),(b),(c). 
The conclusion from this figure is identical with that 
from the curves of B/P: only Bessel terms with n < 6 
will be observable in the X-ray diffraction pattern of an 
HbS fiber. More Bessel terms become detectable as the 
degree of disorder is reduced, as shown in Figs. 
6(d),(e),(f). 

BIP 

0 .8  

0 .6  i,,1 = 40  

0 .4  

0 .2  

0 .0  i , , , , , , , , , , , , I . . . .  

0 10 20 30 40 50 

360 ( r i g )  

Fig. 5. Curves of the ratio of  background (halfway between layer 
lines) to peak height, B/P, against the degree of  disorder, (ng), for 
a fiber with u = 48 and various values of  N. Bessel-function terms 
for which B/P < 5 %  may be separated from neighboring layer lines 
very well. A Bessel-function term with B/P > 80% is essentially 
fiat. For  HbS fibers, where u -- 48 and g = 2.7/360, any term with 
n > 10 is indistinguishable from noise, and only those terms with 
n < 6 may be measurable. 
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3.3. F-Actin fiber 

The F-actin fiber was the first helical structure 
demonstrated to exhibit cumulative azimuthal disorder 
(Egelman, Francis & DeRosier, 1982; Egelman & 
DeRosier, 1982; Egelman, 1992). The helical symme- 
try of the fiber is 13/6. Various values for the degree 
of disorder, from 5 ° through 15 °, were reported, as 
summarized in Egelman's review article (Egelman, 
1992). The degree of disorder and fiber length can be 
measured quantitatively on a high-quality diffraction 
pattern from an F-actin sample (Popp, Lednev & Jahn, 
1987; Holmes, Popp, Gebhard & Kabsch, 1.990) using 
the method mentioned in §3.1. A semi-quantitative 
estimate of the degree of disorder of F-actin fibers may 
be made as follows. Peak projections for F-actin 
calculated from values of g as 0, 3, 6, 9, 12 and 15 ° 
are plotted in Fig. 7. When g < 3 °, every layer line will 
appear in the pattern, with only minor overlapping. 
However, higher-order Bessel terms gradually disap- 
pear with increasing disorder, as shown in Figs. 
7(a)-(f) .  The sixth and seventh layer lines, constituted 
largely of a first-order Bessel term, are still very clear 
even for g as high as 15 °, but other layer lines almost 
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Fig. 6. Peak projections for HbS fiber with u = 48, g = 2 .7 /360  and 

(a) N = 24, (b) N = 96 and (c) N = 192. The projections for 
g = 1 .0 /360 are shown in (d), (e) and ( f )  for comparison, with 
identical values of N as in (a), (b) and (c), respectively. The 
summation for i(Zt) was extended from n = - 9 6  to n = 96 in a 
reciprocal-space range of Z = Z 1 - 0.5/p to Z = Z] + 0.5/p. 
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disappear for this degree of disorder. Visual comparison 
of these results with diffraction patterns from F-actin 
indicates that the degree of disorder in the F-actin fibers 
is usually larger than 9 ° . 

4. Discussion 

Two approaches to the analysis of X-ray diffraction 
from helices with cumulative angular disorder have 
been pursued. The first approach (Egelman & 
DeRosier, 1982; Barakat, 1987; Inouye, 1994; present 
paper) is to decompose the diffracted intensity into its 
Bessel terms and calculate each term by the contribu- 
tions from each subunit pair of the helix. The second 
approach (Worthington & Elliott, 1989) is very 
different in that the diffracted intensity is calculated 
directly from the contributions of each subunit pair. 
Analytically, it is impossible to compare the equations 
resulting from the first approach with those from the 
second, but the final numerical results, obtained from 
similar models, should be comparable. The advantage 
of the first kind of approach is obvious; an explicit 
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Fig. 7. Peak projections for diffraction patterns from F-actin fibers 
with N = 90 and g = 0, 3, 6, 9, 12 and 15 ° as shown in ( a ) - ( f ) .  
The summation for the projection was extended from n = - 5 2  to 
n = 52 in a reciprocal-space range of +0.5/p. All of the layer lines, 
0 to 13, can be detected in the diffraction pattern if g < 3 °, while 
the layer lines 3, 4, 9 and 10 disappear as g increases to 6 °. Another 
two lines, 2 and 11, become undetectable when g = 9 °, and only 
layer lines 6 and 7, and possibly 1 and 12, appear in the pattern. 
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form of equation, describing the effect of disorder and 
helix length on any Bessel term, can be obtained and, 
if the layer line is dominated by a single Bessel term, 
this equation is a good approximation for the whole 
layer-line intensity. 

Egelman & DeRosier (1982) started the investigation 
of the effects of cumulative angular disorder on X-ray 
diffraction from disordered fibers. They found that for 
long fibers the layer-line intensities reduce and broaden 
by a factor proportional to n 2, the square of the related 
Bessel order. Barakat (1987) extended Egelman & 
DeRosier's result by rigorous statistical treatment so 
that the layer-line intensity was obtained in explicit 
form for disordered fibers with any length. Inouye 
(!994) studied layer-line-intensity distribution along the 
Z direction, not only the intensity maxima, and obtained 
an equation of the distribution for long fibers. The 
results we presem here are extensions of the above- 
memioned authors' results. We have carried out a 
rigorous analytical treatment of X-ray diffraction from a 
cumulative azimuthally disordered helix with any length 
and obtained an equation in explicit form, describing the 
Z-direction distribution of any Bessel term in the 
pattern. That work made possible an analysis of the 
reduction of peak intensity, the broadening and the 
overlap of layer lines in diffraction patterns from 
disordered helices over a very wide range of disorder 
degree and the helix length. The results were applied to 
HbS fibers where approximations made in previous 
treatments are not valid. 

This work was supported by the National Institutes of 
Health, grant HL 28381, and a gram from the National 
Science Foundation. 
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